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Abstract

Extracting structured data from bibliographic references is a
crucial task for the creation of scholarly databases. While ap-
proaches, tools, and evaluation data sets for the task exist,
there is a distinct lack of support for languages other than
English and scripts other than the Latin alphabet. A signifi-
cant portion of the scientific literature that is thereby excluded
consists of publications written in Cyrillic script languages.
To address this problem, we introduce a new multilingual and
multidisciplinary data set of over 100,000 labeled reference
strings. The data set covers multiple Cyrillic languages and
contains over 700 manually labeled references, while the re-
maining are generated synthetically. With random samples of
varying size of this data, we train multiple well performing
sequence labeling BERT models and thus show the usability
of our proposed data set. To this end, we showcase an im-
plementation of a multilingual BERT model trained on the
synthetic data and evaluated on the manually labeled refer-
ences. Our model achieves an F1 score of 0.93 and thereby
significantly outperforms a state-of-the-art model we retrain
and evaluate on our data.

1 Introduction

Citations are a crucial part of the scientific discourse and
represent a measure of the extent to which authors indi-
rectly communicate with other researchers through publi-
cations (Shaw 1981). Therefore, accurate citation data is
important for applications such as academic search en-
gines (Ortega 2014) and academic recommender systems
(e.g., for recommending papers (Beel et al. 2016) or cita-
tions (Fiarber and Jatowt 2020)). Since the number of sci-
entific publications that is available on the web is growing
exponentially (Khabsa and Giles 2014), it is crucial to au-
tomatically extract citation data from them. Many tools and
models have been developed for this purpose, such as GRO-
BID (Lopez 2009), CERMINE (Tkaczyk et al. 2015), and
NEURAL PARSCIT (Prasad, Kaur, and Kan 2018). These
tools mostly use supervised deep neural models. Accord-
ingly, a large amount of labeled data is needed for training.
However, most reference data sets are restricted in terms of
discipline coverage and size, containing only several thou-
sand instances (see Table 1). Furthermore, most models and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tools are only trained on English data (Grennan et al. 2019;
Prasad, Kaur, and Kan 2018). Therefore, existing models
perform insufficiently on data in languages other than En-
glish, especially in languages written in scripts other than
the Latin alphabet.

While English is the language with the largest share of
scholarly literature, with estimates of over one hundred
million documents (Khabsa and Giles 2014), other lan-
guages still make up a significant portion. For Russian alone,
for example, there exist over 25 million scholarly publica-
tions (Moskaleva et al. 2018). Publications written in Cyril-
lic script languages, accordingly, make up an even larger
portion, as they include further languages such as Ukrainian
and Belarusian. A lack of methods and tools able to auto-
matically extract information from these Cyrillic script doc-
uments naturally results in an underrepresentation of such
information in scholarly data.

To pave the way for reducing this imbalance, we fo-
cus on the task of extracting structured information from
bibliographic references found at the end of scholarly
publications—commonly referred to as citation field extrac-
tion (CFE)—in Cyrillic script languages (see Figure 1). For
this task, we introduce a data set of Cyrillic script references
for training and evaluating CFE models. As Cyrillic publi-
cations usually contain both Cyrillic and English references,
the data set contains a small portion (7%) of English refer-
ences as well. The data set can be used in various scenarios,
such as cross-lingual citation recommendation (Jiang et al.
2018) and analyzing the scientific landscape and scientific
discourse independent of the used languages (Martin-Martin
et al. 2021). To showcase the utility of our data set, we train
several sequence labeling models on our data and evaluate
them against a GROBID model retrained on the same data.
Throughout the paper we refer to the reference string pars-
ing module of GROBID as just “GROBID”. To the best of
our knowledge, we are the first to train a CFE model, more
specifically BERT, specialized in Cyrillic script references.

Our contributions can be summarized as follows.

1. We introduce a large data set of labeled Cyrillic reference
strings,! consisting of over 100,000 synthetically gener-
ated references and over 700 references that were manu-

'In the course of this work, we use the terms “reference string”
and “citation string” interchangeably.
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Figure 1: A real-world example of a Cyrillic script reference with marked bibliographic labels (top) and the corresponding

labeled reference string (bottom).

ally labeled and gathered from multidisciplinary Cyrillic
script publications.

2. We train the very first BERT-based citation field extrac-
tion (CFE) model specialized in Cyrillic script references
and show the importance of retraining GROBID for Cyril-
lic script language data. We achieve an acceptably high
F1 score of 0.933 with our best BERT model.

The data is available at https://doi.org/10.5281/zenodo.
5801914, the code at https://github.com/igor261/Sequence-
Labeling-for-Citation-Field-Extraction-from-Cyrillic-
Script-References.

2 Related Work

CFE approaches that currently achieve the best performance
are supervised machine learning approaches. Among them,
the reference-parsing model of GROBID is typically reported
to perform the best. We therefore use GROBID as the base-
line in our evaluation.

In recent years, transformer-based models (Vaswani et al.
2017) such as BERT (Devlin et al. 2019) have achieved state-
of-the-art evaluation results on a wide range of NLP tasks.
To the best of our knowledge, there is so far only one pa-
per presenting a BERT-based approach to CFE (Thai et al.
2020). The authors achieve state-of-the-art results on the
UMass CFE data set (Anzaroot and McCallum 2013) by
using ROBERTA, a BERT model with a modified training
procedure and hyperparameters.

The original BERT model comes in three varieties, one
trained on English text only, one on Chinese, and a multilin-
gual model. Furthermore, many offshoots of BERT for dif-
ferent languages can be found in the literature. For Cyrillic
languages, for example, RUBERT is a BERT variant trained
on Russian text (Kuratov and Arkhipov 2019), and SLAVIC
BERT is a named entity recognition model that was trained
on four Slavic languages (Russian, Bulgarian, Czech, and
Polish) (Arkhipov et al. 2019). Both of the aforementioned
publications present a performance gain compared to the
pretrained multilingual BERT by retraining on task-relevant
languages. Because references in Cyrillic publications typi-
cally also contain a mix of Cyrillic and English references,
we use multilingual BERT in our evaluation.

Table 1: A selection of existing citation data sets.

Data set # Instances  Discipline

GROBID 6,835 Multi-discipline
(Grobid’s data set
is a collection of
various citation data

sets)
CORA 1,877 Computer Science
UMass CFE 1,829 Science, technology,
engineering, and
mathematics

GIANT 911 million Multi-discipline

3 Data Set
3.1 Ecxisting Data Sets

Several publicly available data sets for training and evaluat-
ing CFE models exist. In Table 1, we show an overview of
these citation data sets, including the number of reference
strings contained and disciplines covered. In the following,
we describe each of the data sets in more detail.

The authors of GROBID (Lopez 2009) provide the 6,835
samples their tool’s reference parser is trained on. These are
gathered from various sources (e.g., CORA, HAL archive,
and arXiv). New data is continuously added to the GROBID
data set?.

One of the most widely used data sets for the CFE task
is CORA,? which comprises 1,877 “coarse-grained” labeled
instances from the computer science domain. As pointed out
by Prasad, Kaur, and Kan (2018), a shortcoming of the CFE
research field is that the models are evaluated mainly on the
CORA data set, which lacks diversity in terms of multidis-
ciplinarity and multilinguality.

The UMass CFE data set by Anzaroot and McCallum
(2013) provides both fine- and coarse-grained labels from
across the STEM fields. Fine- and coarse-grained labels
means, for example, that labels are given for a person’s full
name (coarse-grained), but also for their given and family
name separately (fine-grained).

2See https://github.com/kermitt2/grobid/issues/535.
3See https://people.cs.umass.edu/~mccallum/data.html.
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All of the above manually annotated data sets are rather
small and part of them is limited in terms of the scientific
disciplines covered. These issues are addressed by Gren-
nan et al. (2019) with the data set GIANT, created by syn-
thetically generating reference strings. The data set con-
sists of roughly 1 billion references from multiple disci-
plines, which were created using 677,000 bibliographic en-
tries from Crossref* rendered in over 1,500 citation styles.

We see none of the data sets described above as suitable
for training a model for extracting citation data from Cyrillic
publications’ references, because they are based on English
language citation strings only, except for GIANT. However,
GIANT does not provide consistent language labels, mak-
ing the issue of accurate filtering for Cyrillic script citation
strings non-trivial.

To the best of our knowledge, no data set of citation
strings in Cyrillic script currently exists. It is therefore nec-
essary to create a data set of labeled citation strings to be
able to train models capable of reliably extracting informa-
tion from Cyrillic script reference strings.

3.2 Data Set Creation

In the following subsection, we identify two approaches for
creating an appropriate data set to train and test deep neu-
ral networks that extract citation fields, such as author in-
formation and paper titles. Grennan et al. (2019), Grennan
and Beel (2020), and Thai et al. (2020) found that syntheti-
cally generated citation strings are suitable to train machine
learning algorithms for CFE, resulting in high-performance
models. We use a similar approach to create a synthetic data
set of citation strings for model training in the next section.
To evaluate the resulting models on citation strings from real
documents, we manually annotate citation strings from sev-
eral Cyrillic script scientific papers. This is described in the
subsection “Manually Annotated References.”

Synthetic References Figure 2 shows a schematic
overview of our data set creation, which is described in the
following.

To create a data set of synthetic citation strings, a suit-
able source of metadata of Cyrillic script documents is nec-
essary. Crossref, which is used by GIANT, provides meta-
data for over 120 million records® of various content types
(e.g., journal-article, book, and chapter) via their REST API.
Unfortunately, most of the data either does not provide a lan-
guage field or the language tag is English. We also consid-
ered CORE (Knoth and Zdrahal 2012) as a source of meta-
data. Although CORE provides at least 23,000 papers with
Cyrillic script language labels and corresponding PDF files
(Krause et al. 2021), it comes with insufficient metadata.
Furthermore, for the relevant BibTeX fields, CORE only
provides title, authors, year, and some publisher entries.

We identified Web of Science (WoS)® as the most appro-
priate source of metadata for creating synthetic references
and based on the option to gather language-specific meta-
data. Additionally, WoS provides a filter for the document

4See https://www.crossref.org.
SSee https://api.crossref.org/works.
8See https://www.webofknowledge.com/.
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Figure 2: Schematic overview of the synthetic data set cre-
ation.

type, even though it lacks, for example, book types. The fi-
nal data set should contain multiple document types to cover
various citation fields.

Web of Science provides access to the Russian Science
Citation Index (RSCI), a bibliographic database of scientific
publications in Russian with roughly 750,000 instances. We
chose to gather around 27,000 most recent (i.e., from 2020)
article type and around 7,000 most recent (i.e., from 2010-
2020) conference proceeding type’ metadata records from
the RSCI. The selection is motivated by the finding of Gren-
nan and Beel (2020) that a model trained with more than
10,000 citations would decrease in performance compared
with a smaller training data set. To verify the latter statement
in our evaluation, we decide to create a data set consisting of
100,000 citation strings in total. Last but not least, following
the GIANT data set, we wanted our data set to consist of
around 80% articles and 20% conference proceedings.

Based on the language tags in the metadata provided by
WoS, a breakdown of the languages of the data we col-
lected is shown in Table 2. Unfortunately, the RSCI database
by WoS does not provide Ukrainian language metadata, but
since Russian and Ukrainian are very similar, we expect the
model to process Ukrainian language references compara-
bly reliable to Russian language references. In our evalua-
tion, we show that our model achieves similar F1 scores for

"The conference proceeding type corresponds to meeting type
in WoS.
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Table 2: Distribution of the reference languages from WoS.

Language Number of items

Russian 31,977
English 2,241
other 9

Russian and Ukrainian language references.

After converting the WoS data to the BibTeX format and
filtering out corrupted entries, we enrich the data with ad-
ditional features, such as “Pagetotal”® and “address” (pub-
lisher city), to get extensive BibTeX entries that are com-
parable to real references. This process results in a total of
34,228 metadata records in the BibTeX format. To generate
bibliographic references, we additionally need to identify a
set of suitable citation styles.

Based on a CORE subset of Cyrillic script scientific pa-
pers (see next subsection for details), we identify the GOST
and APA citation styles to be best suited for generating re-
alistic reference strings. The GOST standards’ were devel-
oped by the government of the Soviet Union and are compa-
rable to standards by the American ANSI or German DIN.
They are still widely used in Russia and in many former so-
viet republics. To introduce a certain level of variety we use
the GOST2003, GOST2006,"° and GOST2008 styles for all
references. Since the APA style cannot handle Cyrillic char-
acters, it is used for non-Cyrillic references only.

For each reference, we create a separate PDF rendition.
Using various bibliography styles for the same reference can
result in reference strings that are completely different in
look and structure. For instance, author names can be ab-
breviated or duplicated at different positions.!! Metadata la-
bels and their counterparts in the PDF references are then
matched by an exact string match or, alternatively, the Lev-
enshtein distance. Exact string matches are not always pos-
sible because some characters are manipulated by TeX while
generating a PDF file or field values themselves change dur-
ing the generation process in various ways, like abbrevia-
tions or misinterpreted characters. To store the reference text
and reference token labels in one file per reference, we cre-
ate labeled reference strings as shown in Figure 1.

In rare cases during the parsing process of the PDFs to
text strings using PDFMiner, tokens were garbled and files
could not be read. Consequently, the corresponding items
are removed from the data set, resulting in slightly vary-

8«pagetotal” is a field specific to the citation style “GOST”,
which will be discussed later.

9See https://dic.academic.ru/dic.nsf/ruwiki/79269.

10Because we were not able to find a copy of the GOST2006
BST file, we replicated it ourselves based on the GOST2003 BST
file and the description at https://science.kname.edu.ua/images/
dok/journal/texnika/2021/2021.pdf.

" An example for a duplicated author name is shown in the fol-
lowing GOST2006 style reference: “Alefirov, A.N. Antitumoral
effects of Aconitum soongaricum tincture on Ehrlich carcinoma
in mice [Text] / Alefirov, A.N. and Bespalov, V.G. // Obzory po
klinicheskoi farmakologii i lekarstvennoi terapii.—St. Petersburg :
Limited Liability Company Eco-Vector.—2012.”.

Table 3: Number of synthetic labeled reference strings per
citation style & reference type.

Citation # Articles  # Conf. Proc. Total
Style

APA 1,293 833 2,126
GOST2003 26,289 7,061 33,350
GOST2006 26,328 7,078 33,406
GOST2008 26,467 7,113 33,580
Total 80,377 22,085 | 102,462

Table 4: Number of synthetic labeled reference strings hav-
ing respective labels per reference type.

Label # Articles # Conf. Proc. Total
title 80,376 22,085 | 102,461
author 80,375 22,079 | 102,454
year 80,305 21,870 | 102,175
pages 80,419 17,944 97,113
journal 80,376 - 80,376
number 80,214 - 80,214
volume 46,494 11,423 57,917
booktitle - 22,085 22,085
publisher - 22,083 22,083
address — 20,034 20,034
pagetotal 1,208 4,141 5,349

ing numbers of references for different citation styles. In the
end, our approach yields about 100,000 synthetically gener-
ated labeled reference strings. A detailed breakdown of the
quantity of data for each citation style is shown in Table 3.

In Table 4, we additionally show the breakdown of labels
covered by our synthetic references.

Manually Annotated References Despite the fact that
many large scholarly data sets are publicly available, most
lack broad language coverage or do not contain full text
documents. Investigating several data sources, we find that,
for example, the PubMed Central Open Access Subset!?
provides mostly English language publications,'® just like
S20RC (Lo et al. 2020). Further, the Microsoft Academic
Graph (Sinha et al. 2015; Wang et al. 2019) covers millions
of publications, but does not contain full texts and therefore
also no reference strings.

We use the data set introduced by Krause et al. (2021)
as a source of Cyrillic script papers. After a filtering step
to remove papers with lacking or unstructured citations we
randomly chose 100 papers to manually annotate.

Analyzing the origin of the selected papers, we note
that 80 originate from the “A.N.Beketov KNUME Digital
Repository”'* and five from the “Zhytomyr State Univer-
sity Library.”!> Origins could not be determined for 15 pa-
pers. Figure 3 shows the distribution of papers by publica-
tion year. A breakdown of the disciplines covered by the data

12See https://www.ncbi.nlm.nih.gov/pme/tools/openftlist/.
3See https://www.ncbi.nlm.nih.gov/pmc/about/faq/#q16.
14See https://eprints.kname.edu.ua/.

13See http://eprints.zu.edu.ua/.
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Figure 3: Distribution of publication years of the selected
100 papers.

set revealed that the most strongly represented disciplines
are “engineering” with 36 papers and “economics” with 16
papers. The remaining 48 papers are spread across various
fields, such as education, zoology, urban planning/infras-
tructure.

Using fastText (Joulin et al. 2016b,a) language detection,
we find that our sample consists of 65 Ukrainian language
and 35 Russian language papers.

Using the annotation tool INCEpTION (Klie et al. 2018),
we label the references in our 100 PDFs. Regarding man-
ual annotation, we note that the real references did not al-
ways fit our set of metadata labels. For example, references
to patents, legal texts, or web resources might not contain
certain elements typical for references to scientific papers.
Furthermore, references containing fields outside the scope
of our labels, like editor or institution, exist. In the case of
booktitle fields of conference proceedings, we used the jour-
nal label. Lastly, due to the difference in use of “N¢” across
citation styles (indicating either an issue or volume number),
in ambiguous cases the number after “Ne” is labeled volume
following the GOST2006 citation style.

Table 5 shows the summary statistics of the resulting data
set. In Table 6, we show the labels used and their number of
occurrences counted in segments (a segment is the full text
range for a label).

Although 65% of the 100 documents are Ukrainian lan-
guage papers, the references are written in various lan-
guages. Nearly 99% are written in Russian, Ukrainian and
English (see Table 7). Other languages contained are Polish,
German, Serbian, and French.

While the number of manually annotated references is not
large enough for training purposes, we argue that the size
and language distribution enable us to perform a realistic
evaluation of our models.

4 Approach

There are various approaches to the CFE task. Most of
them use regular expressions, template matching, knowl-
edge bases, or supervised machine learning, whereby ma-
chine learning-based approaches achieve the best results

Table 5: Summary of the manually annotated data set.

Parameter Counts
Number of annotated papers 100
Number of reference strings 771
Average reference length (in tokens) 28.00
Number of reference related labels 11

Number of labeled reference segments 5,080

Table 6: Segment counts for the labels assigned.

Label #segments
author 1,560
title 773
year 680
pages 612
address 410
publisher 364
journal 328
volume 256
number 91

(Tkaczyk et al. 2018). Furthermore, tools differ in terms of
extracted reference fields and their granularity.

GROBID is commonly considered as the most effective
tool (Tkaczyk et al. 2018) and was created by Lopez.
Tkaczyk et al. reported an F1 score of 0.92 for the retrained
GROBID CRF model on their data set. Beyond parsing ref-
erence strings, GROBID is also able to extract metadata and
logical structure from scientific documents in PDF format.

Following existing literature, we decide to use the GRO-
BID CRF model as a baseline. Therefore we retrain the GRO-
BID CRF model on our synthetic data set following GRO-
BID’s documentation.!® The GROBID CRF model is trained
from scratch.!’

State-of-the-art sequence labeling approaches are often
based on BERT. Accordingly, we fine-tune the cased multi-
lingual BERT model, which is pretrained on 104 languages,
on our synthetic reference data set. We fine-tune/retrain both
BERT and GROBID on several subsets of our synthetic data
set with differing sizes (between 500 and 100K) so that we
can assess the necessity of a large training set.

16See https://grobid.readthedocs.io/en/latest/Training- the-
models-of-Grobid/.
17See https://github.com/kermitt2/grobid/issues/748.

Table 7: Distribution of the reference languages in the man-
ually annotated data set.

Language Number of references

Russian 390
Ukrainian 288
English 82
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Table 8: Evaluation on manually annotated data set for BERT
models with differing sizes of training data average over 5
models trained on different random samples.

Train Set | Recall Precision F1 Score | Standard
Size Deviation
500 0.909 0.916 0.910 0.007
1,000 0.922 0.926 0.923 0.009
2,000 0.928 0.932 0.928 0.007
3,000 0.928 0.931 0.928 0.003
5,000 0.926 0.929 0.927 0.004
10,000 0.920 0.925 0.921 0.005
20,000 0.907 0.913 0.907 0.008
50,000 0.863 0.880 0.864 0.017
100,000 0.847 0.868 0.848 0.012

5 Evaluation

Fine-tuning the BERT model is, compared to pretraining, rel-
atively inexpensive (Devlin et al. 2019). We observed this
as well by comparing the time for fine-tuning with the time
needed to train GROBID. For example, fine-tuning BERT
with 100,000 training instances takes 125 minutes (on a
GeForce RTX 3090 GPU) and training GROBID CRF (on a
16 core Intel Xeon Gold 6226R 2.90GHz CPU) takes 1,233
minutes.

To evaluate our fine-tuned BERT model not only on the
manually annotated but also on the synthetic references, we
remove a hold-out set of 2,000 synthetic references from the
training set, with a fixed distribution of citation styles, ac-
cording to the distribution of the entire data set.

5.1 BERT Evaluation on the Manually Annotated
Data Set

We fine-tune the cased multilingual BERT model on 9 train-
ing set sizes from our synthetically generated labeled refer-
ence data. To ensure robust results, for each of the 9 train-
ing set sizes, we sample 5 training sets, train one model per
sample and average the resulting scores (i.e., in total we train
9 x 5 = 45 models).

Averaged scores for recall, precision, and F1 score for
all 9 training set sizes are visualized in Figure 8.We found
that models trained on relatively small training data sets
(between 1,000 and 10,000 instances) perform best on our
manually annotated test set. More precisely, on average, the
models trained on 2,000 instances perform best regarding
the F1 score. These models achieve an average F1 score of
0.928 (range from 0.917 to 0.936). Already with the small-
est considered training set of 500 instances, we can fine-tune
a powerful BERT model for the Cyrillic CFE task achieving
an F1 score of 0.91 on average.

The highest achieved F1 score of 0.928 (averaged F1
scores of five models trained on different 2,000 instances
random samples) on our test set is comparable with state-
of-the-art models proposed for English CFE (Tkaczyk et al.
2018; Grennan and Beel 2020; Thai et al. 2020; Prasad,
Kaur, and Kan 2018), especially considering the fact that
there are reference types and languages in the test set the

Table 9: Detailed evaluation of labels predicted by
BERTFinal-

Label Prec.  Rec. F1  Supp.
author 0984 0994 0989 7,104
year 0945 0962 0.953 680

pages 0.922 0.984 0.952 1,112
address 0.927 0961 0.944 715
other 0945 0926 0.936 10,730
title 0938 0931 0934 7,257
publisher 0.913 0.781 0.842 1,165
journal 0.765 0.861 0.810 1,982
volume 0.836  0.454 0.588 269

number 0.345 0.860 0.492 93
Weighted

Average 0936 0932 0933 31,107
Score

model was not trained on. Nevertheless, it is difficult to com-
pare our results with other papers, since we work with Cyril-
lic script references and evaluate the models on our self-
created test set.

We further evaluate a BERT model trained on 2,000 ran-
dom instances!'®—referred to as BERT pj,,q; from here on—
regarding individual labels. Since our model is more fine-
grained than the test set, i.e. labels in the synthetic data set
and manually annotated data set are not the same, we had to
change the pagetotal label to pages and the booktitle label to
Jjournal.

As shown in Table 9, our model performs best on identi-
fying author tokens with an F1 score of 0.989. Overall, we
observe an F1 score of more than 0.934 for 6 labels (author,
year, pages, address, other, and title).

We see room for improvement in publisher, journal, vol-
ume, and number predictions. The poor performance in vol-
ume and number predictions can be explained by the ambi-
guity of “Ne” in the test set (see Section “Manually Anno-
tated References”).

We see high recall with low precision values in num-
ber predictions and low recall with high precision values in
volume predictions. The same observation can be made for
Jjournal and publisher predictions, but to a lesser degree.

More than 50% of the actual volume labels are labeled
as number, and around 17% of actual publisher labels are
labeled as journal.

Next, we look into the evaluation on the synthetic hold-
out set. We evaluate the BERT g;,,,; model depending on the
languages of references (see Figure 4).

As mentioned before, our synthetic data set lacks
Ukrainian language references. Nevertheless, the F1 score of
0.946 for Russian language references is only 2.5% higher
than the F1 score of 0.921 for Ukrainian language refer-
ences. This is potentially due to the high similarity between
the Russian and Ukrainian languages.

Additionally, for English language references, the predic-
tions of volume and number labels are much better than for

" Models trained on 2,000 instances perform best on average.
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Figure 4: Evaluation on manually annotated data set for
BERT ;,,4; model per label and language

Cyrillic script references. This is due to the fact that most
English language references are formatted in the APA style,
where there is no ambiguity in the respective labels.

Furthermore, BERT p;,4; predicts publisher and address
labels worse for English language references than for Rus-
sian and Ukrainian language references.

5.2 BERT Evaluation on the Synthetic Hold-Out
Set

Our fine-tuned BERT underperforms in some labels on the
manually annotated test set. To evaluate our model on data
with less ambiguity and the same reference document types
it was trained on, we assess the performance on the synthetic
hold-out set.

Scores for recall, precision, and F1 score for all 9 train-
ing set sizes evaluated on the hold-out set are visualized in
Figure 5. All BERT models achieve F1 scores of over 0.99,
even the model fine-tuned with 500 instances. We also see
a steady increase in the performance, when increasing the
training data set size. Best performance regarding the F1
score (0.998) is achieved by the model trained on 100,000
instances, while this model performs worst on the manually
annotated data set. There are also small differences in the
scores concerning individual labels.

5.3 GROBID Evaluation

We compare our fine-tuned BERT with the state-of-the-art
GROBID model. First, we evaluate the off-the-shelf GRO-
BID on our manually annotated test set. The model achieves
unsatisfying results with an F1 score of 0.09. Only numeric
tokens such as number or year achieve an F1 score of over
0.1. Most of the non-numeric labels have a F1 score of 0 or
close to 0."

Data used for training of the off-the-shelf GROBID has dif-
ferent labels than we have in our synthetic data set. Consequently
some labels are condemned to have scores equal zero, e.g. web.
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Figure 5: Evaluation on synthetic hold-out data set for BERT
models with differing size of training data
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Figure 6: Evaluation on real data set for GROBID CRF mod-
els with differing sizes of training data sets.

GROBID was initially trained on English language ref-
erences. Consequently, it is not surprising that it performs
poorly regarding Cyrillic reference data. Therefore, we re-
train the GROBID CRF model on our synthetic Cyrillic ref-
erence data with differing training data set sizes, as we did
for the BERT model. Evaluations of resulting models on our
manually annotated test set are shown in Figure 6.

We observe poorer performance of the GROBID models
compared to our fine-tuned BERT. Similar to evaluations of
the fine-tuned BERT models and Grennan and Beel (2020),
we see that the best performing models where trained on
relatively small data sets consisting of less than 10,000 ref-
erences. The best performing GROBID model was trained
with 5,000 instances, achieving a F1 score of 0.647. We re-
fer to this best performing GROBID model as GROBID 41 -
Compared to the off-the-shelf GROBID results, we managed
to increase the F1 score by a factor of seven by retraining
GROBID.

Note that GROBID does not provide evaluation scores for other la-
bels.



Table 10: Summary of metrics of the models evaluated on
the manually annotated test set.

Model Precision Recall F1 Score
Vanilla GROBID 0.347  0.052 0.090
GROBID Final 0.665 0.631 0.647
BERT pinal 0.936 0.932 0.933

Compared to the off-the-shelf GROBID, we see higher F1
scores in almost every label, except for year and number.
The best label performance is measured for paper title, with
an F1 score of 0.817. A comparison of evaluation metrics of
GROBID and BERT is shown in Table 10. Our BERT gy, 4;
model outperforms the GROBID g, model in every label
and, consequently, in overall F1 score as well.

6 Conclusion

In this paper, we provide a large data set covering over
100,000 labeled reference strings in various citation styles
and languages, of which 771 are manually annotated ref-
erences from 100 Cyrillic script scientific papers. Further-
more, we fine-tune multilingual BERT models on various
training set sizes and achieve the best F1 score of 0.933 with
2,000 training instances. We show the eligibility of synthet-
ically created data for training CFE models. To compare our
results with existing models, we retrained a GROBID model
serving as a benchmark. Our BERT model significantly out-
performed both off-the-shelf and retrained GROBID. In fu-
ture work, our BERT model could be compared to other well-
performing CFE models, such as CERMINE and NEURAL
PARSCIT.

Our data sets can be reused by other researchers to train
Cyrillic script CFE models. In particular our manually anno-
tated data set can serve as a benchmark for further research
in this field, since it provides references from various do-
mains and covers several languages.

Regarding our BERT model, we see two key aspects for
future work. First, literature describes benefits of adding
a CRF layer at the top of a model’s underlying architec-
ture (Prasad, Kaur, and Kan 2018; Arkhipov et al. 2019),
which could also be considered for our approach. Second,
our model’s performance could be increased by retraining
BERT from scratch on task-specific languages, e.g. in our
case Cyrillic Script languages and English, as shown by Ku-
ratov and Arkhipov (2019) and Arkhipov et al. (2019).
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